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Solvable Models of Classical Lattice Gases 
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We study classical lattice gases at fixed temperature but variable fugacity. It is 
shown how the thermodynamic functions may be calculated exactly provided 
the Boltzmann weights are representable as principal minors of a convolution 
operator. We explicitly construct this operator for the cluster models of Fisher 
and Felderhof. 
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1. INTRODUCTION 

The general theory of lattice gases as developed by Gallavotti, Dobrushin, 
Ruelle, Miracle Sole, Lanford and Robinson, Israel, and others has re- 
vealed a beautiful mathematical structure with a wide range of applica- 
tions. This work evidently paved the way for a deeper understanding of 
equilibrium statistical mechanics and dynamical systems alike. The inter- 
ested reader is referred to the reviews by Israel, (1) Ruelle, (2) Georgii, (3) and 
Mayer.~ 4) 

Unfortunately, very few exactly solvable models are known. To find 
more, we need to understand why the existing models lead to explicit 
formulas for macroscopic quantities. (We would say for example that the 
pressure of the infinitely extended gas is explicitly known if it can be 
written as an integral over the first Brillouin zone.) 

The present investigation arose from an attempt to generalize condi- 
tions satisfied by the one-dimensional cluster models of Fisher and Felder- 
hof. (5) As is known, (6) these models admit explicit solutions not only in the 
continuum but also on a lattice. Comparison shows that the physics is 
almost the same, but there are simplifying features for the lattice version. 
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A substantial portion of our discussion does not need the postulate 
that the lattice be one-dimensional. Thus, whenever possible we use Z" as 
the underlying lattice. We thereby hope to stimulate the search for v- 
dimensional solvable models. However, we confine ourselves to the special 
case where each lattice site may be occupied by either one or no particle. In 
the spin language, this is the familiar Ising model. 

2. CONVOLUTION OPERATORS AND TOEPLITZ DETERMINANTS 

With the infinitely extended lattice Z ~ we associate the Hilbert space of 
square summable functions, L2(Z~), on which we wish to consider convolu- 
tion operators, 

(V~)(x) = ~ , v ( x  - y )~ (y )  (x, y E Z ~) (2.1) 
Y 

Clearly, V may also be viewed as an infinite matrix V x , s = v ( x - y  ) 
indexed by Z" • 7/". Let us recall the definition of a principal minor 

det x V -- det( Vx,y ) (x, y ~ X)  (2.2) 

where X is any finite subset of Z ~. We assign the value 1 to det o V. In a 
sense, these minors generalize the concept of a Toeplitz determinant. We 
wish to write 

e-  u(x) = detx V (2.3) 

where we interpret U(X) as the energy function of a lattice gas and X as 
the set of occupied sites. We therefore require det x V > 0 for all X. At first 
sight, (2.3) might seem an ad hoc definition. However, as will be discussed 
in Section 4, the Fisher-Felderhof models (including the model that Ising 
solved in 1925) share this peculiar structure which we believe has a 
fundamental significance. It will become less mystical as we progress. 

We must not expect U(X) to always describe pair potentials and 
short-range interactions. It will be seen later how special properties of the 
energy U(X) are reflected in the operator V. Implicitly in (2.3) is the 
assumption U(O)= 0 and the choice of "natural" boundary conditions: 
there is nothing outside X to interact with the particles in X. The definition 
(2.3) also takes care of the translation invariance. 

Let X denote the number of occupied sites and let z be the fugacity of 
the system. Then the grand partition function for a finite volume A c Z ~ is 

~A(Z) = ~ zlXle -U(s) = detA(1 + zV)  (2.4) 
X c A  
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This formula is easily derived within the framework of exterior algebra (see 
the Appendix). In order to study the thermodynamic limit we need to 
assume E[v(x)] < oo. Then 

= fdp  e -ipx~(p) (2.5) 1)(x) 

where the Fourier transform 6 is a bounded function on the torus - rr < Pk 
< ~r (k = 1 . . . .  , v) with measure dp = (2~r)-~dpl �9 �9 �9 dp~. Here and hence- 
forth integrations with respect to p are over the torus (i.e., the first Brillouin 
zone). We shall also impose the condition 

6 (p)  = ~5(-p) (2.6) 

which renders v(x) a real function. 
Notice that the Fourier decomposition (2.5) provides a spectral decom- 

position of the convolution operator V. By the functional calculus, any 
reasonable function f of V is a convolution operator arising from f(6(p)). 
Notice also that if z is complex and confined to the open disk Iz[ < 
infiX(p)[ -1 the operator Q = log(1 + zV) is well defined as has diagonal 
elements Qx,x = P(z), where 

= f aplog[ l + (2.7) 

independent of the site x. As is seen from (2.4), log HA(Z ) becomes the trace 
of Q for a large volume A. This then identifies P(z) as the pressure of the 
system. It may be worth mentioning that the reality condition (2.6) allows 
us to rewrite (2.7) if z is real: 

= fa? log[1 + z ~ ( p ) ]  P(z) (2.8) 

From (2.7) we obtain the particle density 

p ( z ) = z d P ( z ) = f d p { l + [ z ~ ( p ) ] - ' }  - '  (2.9) 

to an analytic function of the fugacity z except on the which extends 
singular set 

M = {z E C[z~(p) = - 1  for somep)  (2.10) 

A phase transition occurs if M intersects the positive real axis. A special 
situation of interest arises if [~(p)[ = 1 for allp. In this case M is seen to be 
a subset of the Lee-Yang circle [z[ = l and V is an infinite orthogonal 
matrix. The significance of this situation will become clear when we adopt 
the spin language and study spin correlations. 
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. CORRELATION FUNCTIONS 

W e  show h o w  to obtain explicit expressions for the correlation func-  
tions. With any finite A c A we associate an Ising variable 

oA(x ) = ( -  1) IxnAI (3.1) 

The expectation in the grand canonical ensemble, (OA) A, is given by 

o A ( X ) z l X l e  
XcA 

= Y, detx(zS  V) 
XcA 

-- detA(1 + zJA V) (3.2) 

where we introduced the following involution on L2(~):  

{ -~(x) ,  x ~ A  (3.3) 
= x A 

Thus we are left with the problem of unraveling the expression (3.2) with 
regard to its dependence on A and A. To this end we introduce the 
projection operator PA ---- �89 -- Ja) and write R A = PARPA for any opera- 
tor R. Suppose now that three operators R, S, T satisfy the equation 

1 + R A = ( l  + SA)(1 + TA) (3.4) 

Then 

detA(1 + R)  = detA(1 + S)detA(1 + T) (3.5) 

Likewise, we write JA = 1 -  2P A in (3.2). It is easily verified that the 
operators R = zJ A V, S = - 2 z P  A VA(I + ZVA) -1, and T =  z V  satisfy (3.4) 
and hence (3.5). Insertion in (3.2) yields 

(OA) A = detA[ 1 -- 2 z p  A VA(1 + ZVA) - l  ] 

= detA[ 1 -- 2ZVA(1 + ZVA)-11 

1 - - z V  A 
= detA 1 + z V  A (3.6) 

where we used a simple property of the determinant, i.e., for any operator 
R and any subset A C A 

detA(1 + PA R)  = detA(l + PA RP~ ) = deta(1 + R)  (3.7) 

In the thermodynamic limit, we obtain (aA) as a generalized Toeplitz 
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determinant, 

where 

(aA) = det A W (3.8) 

W -  1 - z V  
1 + z V  (3.9) 

which is a convolution operator, Wx,y = w(x -y) ,  arising from 

1 - z r ( p )  
- 1 + ze(p)  (3.10) 

Since k ( p )  = f f ( - p ) ,  w(x) is a real function on 7/". In the above derivation 
we tacitly assumed that z stays away from the critical values. As a result we 
obtained a unique equilibrium state of the infinite system. From this state, 
as z approaches a critical value (on the positive real axis), we may obtain 
two different states depending on whether our approach is from above or 
below. This is due to the fact that i f (p)  develops a singularity as a function 
o fp .  

Let us now investigate what is implied by our basic formula (3.8). 
First, take A = (x}: 

<o 5 = w(O) = f ae (p) (3.1 1) 

which agrees, of course, with (2.9) since magnetization is related to the 
density by (Ox) = 1 - 2p. Next, take A = (x,  y},x ~y:  

(oxoy) = w(0) 2 -  w(x - y )w(y  - x) (3.12) 

This shows that w(x) has to do with the truncated two-point function. 
What  is the simplifying feature of the condition [6(p)l = 1? In this case 

we would write z = e - 2 s  and call B the "magnetic field." Let us distinguish 
the following two cases: 

(1) The range of ~(p)  includes - 1. Then B = 0 is a critical value. This 
suggests a study of the magnetization re(B)= (Ox) as a function of the 
magnetic field: 

e2S-- v(P) (3.13) 
=jdpf e2B + r m(n) 

Notice that m ( -  B)  = - re(B). Changing variables to 

i 
1 + e (p )  

f(P) = 1 - tT(p) ' e = t anhB (3.14) 
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we may write 

f r (3.15) m ( B ) = e + ( 1 - e  2) dp f(p)2+e2 

to obtain the spontaneous magnetization 

m (+ O) = rrfdp 3 (f(p)) (3.16) 

provided tip) is a sufficiently smooth function. An elementary formula 
avoiding 3 functions is the following: 

m ( + 0 )  = l im~rE- l f ,  .< dp (3.17) 
E$O f(p) ~ E 

2. The range of ~(p) does not include - 1. Then B = 0 is not a critical 
value. At B = 0, W is just the Cayley transform of the orthogonal matrix V, 
hence is antisymmetric proving w ( -  x) = - w(x). As a result, spin correla- 
tion functions of odd order vanish identically, while correlation functions 
of even order are nonnegative (as squares of Pfaffians). The static suscepti- 
bility of this system is 

X = ~ x  ( G ~ 1 7 6  l + g ( p )  (3.18) 

4. THE FISHER-FELDERHOF MODELS 

We now specialize to one-dimensional translation invariant lattice 
systems and characterize the Fisher-Felderhof (FF) models by the follow- 
ing property: 

Separation Property. If some site n ~ 7/ is not occupied by a 
particle, the configuration on the left does not interact with the configura- 
tion on the right, that is to say 

U(X) = U(X,) + U(X~) (4.1) 

if n ~ X  a n d X  t = {x EXIx  < n}, Xr= {X E X I x  > n}. 

In some sense, this extends the concept of nearest-neighbor interaction 
to many-body forces. Recall that one may recursively define a potential 
q~(X) such that q~(O) = 0 and 

U(X)= ~. q~(Y) (4.2) 
r e x  

Using this device we may also characterize the FF models by following the 
equivalent property: 
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Cluster Property. r  = 0 unless X is a cluster (i.e., an interval of 
integers). 

If  X is a cluster of size IXI = n > 0, we write En = U(X)  and Jn 
= r From (4.2) we have that 

n 

E,  = ~ ( n -  k + 1)J k (4.3) 
k = l  

The model under consideration is completely specified by giving either 
(En) or {J , ) ,  i.e., a denumerable set of real numbers. We then define the 
"master  function" 

F(u)  = 1 + ~ u"e -e" (4.4) 
n = l  

and require that the series has a nonzero radius of convergence: lim n-1E,  
> - oo. There is still another way to characterize the FF models. 

T h e o r e m .  U(X)  has the separation property if and only if 

e -u (x )  = detx V (4.5) 

where V,, m = v(n - m) and v(n) = 0 for n < - 1. 

Proof. The "if" part  is fairly obvious, Any finite set X c Z may be 
uniquely decomposed into clusters Ci and 

det x V = I-[ detc, V (4.6) 
i 

owing to the fact that Vn,,n = 0 for n + 1 < m. 
To prove the "only if" part  we consider, for instance, a cluster of size n 

and obtain 

v(0) v(- 1) 

v(t) v(0) 
= e - e "  ( 4 . 7 )  

v(-1) 
v ( n - -  1) . . .  v(1) v(0) 

This equation determines v ( n -  1) uniquely provided the v(k) ,  k = 
0 , . . . ,  n - 2, have been determined previously. If, in (4.7), we let n = 1, 
2, . . . ,  all v(n) may be calculated in a recursive manner  provided v ( -  1) 
has been assigned a certain value to begin with. Thus we fix r = - v ( -  1)- 1 
> 0 and look at the formal power series 

OG 

B ( : )  = ~.~ v ( n -  1):" (4.8) 
n = 0  
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As Wronski observed, (7) (4.7) provides a scheme to find explicitly the 
coefficients of the inverse power series 1 /B(~)  which in our case is 
-rF(r~) .  Conversely, v(n) may be written as a Toeplitz determinant, 

re - E1 1 

r2e- E2 re-  E, �9 . 

r n + l e - E . + l  . . . 

which proves our theorem. �9 

1 
r 2 e  - g 2  r e  - E I 

= ( -  1)"rv(n) (4.9) 

Let us now establish the connection between B(~) and 6(a) where 
= e i". The function F(r~) has an absolutely convergent Fourier series 

provided r is smaller than the radius of the defining series. Moreover, if the 
function F(r~) does not vanish on the unit circle I '1 = 1, then by virtue of a 
well-known theorem of Wiener on division by a Fourier series, the inverse 

B(~ ) = [ - rF(r~ ) ] - '  (4.10) 

has an absolutely convergent Fourier series with Fourier coefficients given 
by v(n - 1). It remains to show that r may be chosen such that F(r~) does 
not vanish on I~1 = 1. In fact, F(r) is an increasing convex function in r > 0 
and thus F(r) = 2 has a unique solution r = R. If r < R, 

[F(r~)[ > 1 - ] ~ e - & ( r ~ ) "  

> 1 - ~ e - E " R " = 2 -  F ( R )  (4.1t) 
n 

hence IF(r~)l > 0. This establishes 

6(a)= k v(n)eina=[-reiaF(reia)] -1 (4.12) 
n =  - - 1  

Appealing to our general formula (2.7) we obtain the pressure as a function 
of the fugacity, 

P(Z)= 2~ ; ~ d a l o g [ 1  z ] (4.13, 
re i"F(re is ) 

which may also be written as a Cauchy integral, 

1 f l  u - ~ l o g [ 1  z ] (4.14) P(z)  = ~-~ I = r  uF(u) 

We restrict the fugacity z > 0 such that u z < r where u z is the unique 
positive solution of 

uzF(u~) = z (4.15) 

Notice that u~ is a monotone function of the fugacity and u z < z. 
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To evaluate  the integral (4.14) we proceed  in two steps: (1) W e  show 
that, as a funct ion of u, uF(u)  - z has no zeros in the disk luJ < u s besides 
the simple zero at u = u z. (2) Likewise, F(u)  does not  vanish in lul < uz 
since u z < R [see (4.11)]. We  m a y  write 

1 ut~u)-z( 1, ul )f(u) ( 4 . 1 6 )  

There  exists e > 0 such that  f ( u )  is analyt ic  and  nonzero  in the open disk 
]u] < uz + e. Of course, f depends  on z, bu t  notice that  f (0)  = 1 since 
F(F)  -- 1. Therefore,  u - l log f ( u )  is analyt ic  and  does not  contr ibute  to the 
Cauchy  integral (4.13) if u s < r < u s + c leaving 

1 flu du z ) = l o g  z ( 4 . 1 7 )  - -  l o g (  - -  - z 
P ( z )  = ~ I=r U \ U s U U z 

I t  remains  to prove  the following lemma.  

I . e m m a .  u F ( u )  - z has no zero in the domain  ]u I < uz, u =~ u z. 

Proof.  For  any  a > 0, 

Iz  - u F ( u ) l  >1 Iz  + a - ui  - l a  - u + uF(u)l  

> [ z + a - u  I - a - l u l l F ( u ) -  1[ 

Now,  [u I < a implies [F(u) -  1[ < F ( a ) -  1 since F ( u ) -  1 has a power  
series with positive coefficients. Moreover ,  aF(a)  -- z if a = u z and  thus 

] z -  uF(u) l  >1 Iz + u s -  u I - z (4.18) 

To  complete  the a rgumen t  we notice that  the disk ]z + u 2 - u] < z inter- 
sects the disk [u] < u2 in precisely one point,  u = u s. Therefore,  the right- 
hand  side of (4.18) is strictly positive granted  the assumpt ions  on u. �9 

As has been shown by  Fisher and  Felderhof,  the F F  models  m a y  
exhibit l iqu id-gas  phase  transit ions due to the presence of n -body  interac- 
tions of arbitrari ly large n. However ,  these transit ions are of a very special 
na ture  and  are ma rked  by  the fact  that  the liquid has the close packing 
density p = 1 (unless E ,  = + oo for  some n). This behavior  m a y  be studied 
in examples  like the logari thmic model  where E ,  = J l o g  n and  hence 

r ( u )  = 1 + ~ u 'n  - s  (4.19) 
n = l  

Here  the transit ion occurs at  J = 1, p = 1. A b o v e  the critical coupling, the 
gas condenses  at  a finite pressure 

P = log[1 + f ( J ) ]  (4.20) 

(~" is R i e m a n n ' s  zeta funct ion)  whereas below the critical coupl ing the 
pressure rises to infinity as 0 tends to 1. I t  m a y  be worthwhile to point  out  
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that  the one-dimensional  Ising model,  

U =  J ~ ( 1  - On(In+l) "4,- B ~ ( 1  - %) (4.21) 
n n 

appears as the following special case of the FF  models:  

E n = 4J ,  z = e -2~ (4.22) 

In  words, a cluster of size n creates two dissatisfied bonds  with energy 2 J  

each. Thus, the master funct ion takes on the simple form 

F ( u )  - 1 - a2u (lul < 1) (4.23) 
1 - u  

where 

a 2 =  1 -- e -4s (4.24) 

To reproduce the s tandard textbook formula  for the free energy we would 
simply determine l o g ( z / u z )  where u~ is the positive solution of the qua- 
dratic equation u F ( u )  = z .  Instead, we consider the more interesting prob- 
lem of investigating the convolut ion operator  V for ferromagnetic  coupling, 
J > 0 .  

F rom (4.11) we infer that  

6 ( a )  = ~ a v ( n ) e  in'~- 1 - ae  -i'~ 
n 1 - ae  ia (4.25) 

provided we choose r = 1 / a .  Then 16(a)l = 1 and 3 ( -  a)  = 1/,3(a). Setting 
Vn, m = v ( n  - m )  as before, we obtain an infinite or thogonal  matrix with 

I a n ( 1  -- a2), n >1 0 

v ( n )  = -- a, n = -- 1 (4.26) 

0, n < - 2  

One may  also look at the function 

1 - t~(a) a s i n a  - ~ , w ( n ) e  i''~ (4.27) 
~ ( a ) -  1 + ~(ct) - i 1 - a c o s a  n 

that generates the correlation functions at B = 0, 

( O A )  = de tw(n  - m )  ( n , m  E A) (A c Z). (4.28) 

I t  follows f rom (4.26) that  

b n, n > 0  
w ( n )  = 0, n = 0 (4.29) 

- b - " ,  n < 0  

where 2b = a(1 + bZ), hence b = ( t a n h J )  1/2. 
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5. UNSOLVED PROBLEMS 

We described a class of lattice models using the criterion that there 
exists a convolution operator V from which the energy function U is 
derived: det x V = e x p [ -  U(X)]. This was done for a fixed temperature, say 
fl = 1. We did not discuss how a change of temperature affects the 
operator V. Not  even the existence of V(fl)  such that d e t x V ( f l ) =  
e x p [ - f l U ( X ) ]  has been shown. We also failed to obtain the most general 
solution of the positivity requirement det x V > 0. Of course, these problems 
do not arise in the FF models because there we found a way to invert the 
relation between V and U. To sum up we formulate our main problem: 

Main Problem. Under  what conditions can V be obtained from U? 

In principle, one should be able to decide whether the two-dimensional 
Onsager model falls within the described category. Suppose there were a 
method to construct the convolution operator for this model at B -- 0; this 
then would at the same time solve the difficult problem with B v ~ 0. Notice, 
however, that the two-dimensional Onsager model with B = 0 is intimately 
related to a combinatorial problem involving dimers which has a solution 
in terms of Pfaffians rather than of determinants. Does this mean that our 
approach to the problem is bound to fail? 
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APPENDIX 

Let L2(71 ~) be the Hilbert space of square summable complex functions 
on 7?" and let ex(y) = 8x,y for x, y ~ g ". By construction, the functions ex 
form a basis. Given a bounded linear operator V on this space, it is 
uniquely determined by its matrix elements V~,y = (e x, Vey). With any finite 
subset A C 7/~ we associate a subspace E A spanned by the vectors e x with 
x E A. Let V A be the restriction of V to this subspace. Then V A has matrix 
elements Vx,y where x, y E A. We now extend V A to a linear operator 
A(VA) on the exterior algebra A(EA). To obtain the matrix representation 
for A(VA) we first construct a basis for A(EA). Assume for a moment  that A 
has been totally ordered (for instance by lexicographic ordering of Z~). For 
any X c A we would write 

e x = e x A e y A - . .  A e  z (A.1) 
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where (x, y , . . . ,  z) is the sequence of elements in X arranged in increasing 
order. We put e o = 1. Any vector u E A(EA) has an expansion ~Uxe x. The 
scalar product (u, v) = ~ ~xVx gives A(EA) the structure of a Hilbert space, 
also known as the Fock space (with Fermi statistics) over EA. The remark- 
able fact about this construction is that 

(e x, A( V A )ex) = det x V (X c A) (A.2) 

i.e., the diagonal elements of A(VA) considered as a matrix coincide with 
the principal minors of V. The second fact about this construction is the 
validity of the trace formula (s) 

ztXldetx V= ~] detx(zV ) = trA(zV A) 
X c A  X c A  

= det(1 + zVA ) = detA(1 + zV) (A.3) 

It is easily checked that the ordering of Z" is, in fact, irrelevant for the 
diagonal elements of A(IrA). 
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